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On the basis of many experiments and theoretical reflections, the authors showed 
earlier that the courses of non-isothermal analytical curves are strongly influenced by 
the experimental conditions, and therefore the sense of kinetic parameters calculated 
from these curves is fictitious and their determination is uncertain. 

In the present work some further problems of this question are discussed. It was 
found that with combinations of strongly differing parameters nearly identical TG 
curves can be produced, and this situation cannot be improved even by orthogonal 
polynomial transformation. Further integral methods, using linearization, the esti- 
mation of the parameters is poor. 

The model transformed according to the conditions of the quasi-isothermal -- quasi- 
isobaric technique leads to contradictions, unambiguously showing the correlation 
existing between the parameters. 

The view that  the parameters A, E and n o f  the Arrhenius relation can reliably be 
calculated f rom thermoanalytical  curves has now persisted for  more  than two 
decades, in spite of  the fact that  the practical application of  the calculation reel hod  
involves many  difficulties. Thermoanalysts  have therefore tried to develop various 
new calculation methods,  or  to apply corrections to the earlier methods in order to 
eliminate the obstacles [ 1 - 4 1 ] .  The great number  of  these researchers itself implies 
admission of  the errors, and has given rise to certain criticism [ 4 2 - 5 5 ] .  However  
the struggle has not  been given up. As a concession the fiction of  " fo rma l"  kinetics 
was born,  which attributed to kinetic parameters not  a real but  some fictitious 
sense. 

Information content of conventional 
thermoanalyticaI curves 

The contradictions connected with this question can be studied in Fig. 1 and 
Table 1. Every curve of  the Figure represents the decomposi t ion o f  calcium carbo- 
nate. The differences between the courses of  the individual curves are due to the 
various experimental conditions. Especially conspicuous are the differences between 
the shapes o f  curves traced under dynamic (curves 1 - 8) and under  quasi-isother- 
m a l -  quasi-isobaric conditions (curves 9 -  12). 
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Fig. 1. TG curves of calcium carbonate, traced by using various heating rates, sample amounts 
and sample holders. Curves 1-- 4: dynamic heating rate 2.5~ 50 mg CaCO3; curves 5-- 8: 
dynamic heating rate 10~ 250 mg CaCO3; curves 9--12: quasi-isothermal heating, 
0.5 rag/rain (58); 250 mg CaCO3; curves 1, 5, 9: multiplate sample holder (60); curves 2, 6, 
10: uncovered crucible (60); curves 3, 7, 11: covered crucible; curves 4, 8, 12: labyrinth 

crucible (58) 

Table 1 contains the parameters computed from curves 1 - 8 with four different 
methods of kinetic calculation. These values show big variations, depending on 
both the experimental conditions and the calculation methods, despite the fact that 
each of them represents the very same simple decomposition reaction. 

In the knowledge of this contradiction, we earlier [56-  58] considered it doubtful 
that it is possible to draw unambiguous and useful conclusions regarding the kinet- 
ics of reactions from the courses of conventional thermoanalytical curves. 

We examined the correlations between the shapes of thermoanalytical curves and 
the mechanisms of the elementary chemical and physical processes (Table 2) oc- 
curring. Our investigations convinced us that, under the conditions of dynamic 
thermoanalytical examinations, the course of the transformation is not defined by 
the chemical reaction itself taking place on the phase boundary (Table 2, b), but by 
the elementary physical processes slower by several orders of magnitude, i.e. the 
experimental conditions which influence these processes. Of these, gas and heat 
transports play the most important roles (Table 2, c). Accordingly, the courses of 
the thermoanalytical curves are characteristic rather of the experimental conditions 
than of the reaction examined. 

Experience shows that powdered material of poor thermal conductivity is not 
able to take up instantaneously from its surroundings the heat necessary for the 
progress of the transformation�9 Consequently, the progress of conversion is con- 
trolled in most cases by the heat transport, this being the slowest of the processes. 

The difference in the courses of curves 8 and 12 in Fig. 1 serves as proof  of this. 
Under the experimental conditions of the graph, there was a difference only in the 
rate of heat absorption amounting to about two orders of magnitude. 
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Table 1 

Kinetic parameters (n, E, A) calculated with different methods on the basis of the curves shown 
in Fig. 1 

T G c u r v e  
in Fig. 1. 

Polyplate 

Pt crucible 

Pt crucible 

I n 

I 
! Kissinger 

0.7 

0.5 

0.5 

0.5 

Sample holder 

Ereemann - -  

Carrol  

n ] E 

0.0 
i 124 

1.5 ] 
71 

1.6 
69 

2.0 
87 

I 

1.0 

Horowi t z - -  
Metzger  

h i e  

0.5 
114 

o3! 
78 

0.3[ 
i 78 
i 

I 

0.2 
92 

I 
0.3 ( 

1.0 

2.0 

1.0 

1.0 

i 

0.5 

Zsak( 

E 

90 

68 

70 

72 

2 " 1014 

2 �9 1014 

3 �9 1014 

7 " 101~ 

with cover 3 

7 

Labyrinth 
crucible 4 

8 

0.6 0.8 

1 . 0  0.4 

80 

0.3 
72 

61 

0.8 
209 

77 

80 

0.7 
99 

162 

0.5 

54 
2 " 10 l~ 

52 
2 �9 109 

66 
5 �9 10 TM 

106 
2 " 10 TM 

I t  is also easy to see tha t  in  the case of reactions leading to equi l ibr ium the prog- 
ress of the dissociation is fundamenta l ly  influenced by the cont inuous  and  uncon-  
trollable changes in the concentra t ion  of the gaseous decomposi t ion products in 
contact  with the solid material  [59], and by the experimental  condit ions influencing 
the above changes. 

The magni tude  of this effect can be judged from the difference in  the courses of 
curves 6 and  8 in Fig. 1. In  the case of curve 6 the concentra t ion of the gaseous de- 
composi t ion products  in the vicinity of the sample cont inuously  changed, while it 
remained constant  dur ing the whole t ime when curve 8 was recorded. 

The course of the t ransformat ion  can be further modified among  others by 
nucleus format ion  and  nucleus growth, as well as by recrystallization processes 
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Table 2 

Elementary chemical and physical processes playing a part in thermal decomposition 
reactions leading to equilibrium 

I Partial processes of thermal decomposition reaction of type: 

I 
Evolution of ga- 

seous products 

I 
release ~ return 
of gas molecules 
from or to the 
lattice, respec- 

tively 

I 
chemisorption 
desorption of the 
gas molecules at 

I 
the interface I 

. . . . . . . . . . . .  i . . . . . . . . . . . .  

I 
Departure of gas- [ 
eous products 

by diffusion 

I 
through the cap- 
illaries of the 
grain, between 
interface ,~ grain 

boundary 

Formation of 
new solid phase 

I 
Nucleus forma- 

tion 

I 
Growth of nu- 

cleus 

I 
Recrystallization 

I Heat transfer 

I 
between 

surface ~ centre 
of a single grain 

I 

through the space between 
unfilled with surface ~ centre 
grain, between of the sample 
grain boundary ] 

sample surface between 

I furnace ~ sample ,1 
in the sample hold-! surface 
er between sam- 
ple surface ~ sur- I 

roundings ~ 

Relation between the 
rate of the partial 
process and the 
heating program 
applied 

a) 
quicker, therefore 

not rate-determin- 
ing 

b) 
comparable, there- 

fore may be rate- 
determining 

c) 
slower, therefore in 

most cases rate- 
determining 
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influencing the porosity of the new phase and the diffusion rate of the gaseous de- 
composition products (Table 2). 

For the sake of completeness it is to be noted that the mechanism of the partial 
processes cannot actually be surveyed at all, because with the progress of the con- 
version the phase boundary continuously migrates from the direction of the grain 
surface towards the centre and as a consequence the conditions of mass and heat 
transport continuously change. 

Information content of quasi-isothermal-quasi-isobaric 
TG curves (Q-TG) 

The question arises as to what kind of information regarding the kinetics of the 
reactions may be obtained from Q-TG curves traced with the quasi-isotnermal- 
quasi-isobaric technique [56-  58]. 

The point of the quasi-isothermal heating technique lies in the condition that the 
heating regulator system establishes a difference between the furnace and sample 
temperatures such that the transformation should take place at a very low and 
strictly constant rate, selected in advance. It is experienced in such cases that no 
temperature drop occurs within the sample, and there is sufficient time for the up- 
take of the heat amount necessary for the conversion. 

Due to the constant decomposition rate, the partial pressure of the gaseous de- 
composition products in contact with the solid phase (Fig. 1, curves 9 -  12) also 
remains constant (quasi-isobaric). This is especially valid when the labyrinth 
sample holder is used, in which a "self-generated" atmosphere is formed immediately 
at the beginning of the transformation and the 1 atm partial pressure of the gaseous 
decomposition products stays constant until the end of the conversion (curve 12). 

The temperature of the sample becomes spontaneously adjusted to the value at 
which the rate of the transformation may remain constant. In the case of reactions 
leading to equilibrium, this temperature corresponds to the instantaneous state of 
equilibrium defined by the concentration of the gaseous decomposition products too 
(Fig. 1, curves 1 - 12). 

In reactions not leading to equilibrium (Fig. 2, curve b), the temperature of the 
sample is established independently of the concentration of the gaseous decomposi- 
tion products. 

The Q-TG curve, recorded as a function of this temperature, changing in a spe- 
cial way, yields other information regarding the kinetics of the transformation than 
does the conventional TG curve. Two basic types of Q-TG curves can be distin- 
guished. 

The conversion takes place according to zero order if the course of the Q-TG 
curve is similar to that of curve a in Fig. 2. In such cases the progress of the trans- 
formation is governed by the heat transport, this being the slowest process. The 
chemical reaction occurring at the phase boundary (Table 1, a) is too rapid to be 
able to exert any influence upon the course of the transformation. It has been found 
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Fig. 2. Two basic types of thermogravimetric curves traced under quasi-isothermal and quasi- 
isobaric conditions (Q-TG); a) zero-order transformation, b) not zero-order transformation 

that the simple dissociation reactions of inorganic compounds leading to equil- 
ibrium occur in this way. 

Curve b in Fig. 2 illustrates transformations which do not take place according to 
zero order, and in which the chemical reaction itself is often the slowest process, 
defining the course of the conversion. This kind of Q - T G  curve may be obtained in 
reactions of inorganic and organic compounds not leading to equilibrium, or if 
consecutive and overlapping reactions are taking place, or if the reaction becomes 
diffusion-controlled due to the formation of a compact new phase which is hard to 
cross for the gaseous decomposition products. 

P r e l i m i n a r y  c o n c l u s i o n  

In accordance with the above, kinetic calculations, performed on the basis of 
thermoanalytical curves traced under dynamic heating conditions, yielded very little 
information concerning the kinetics of the reactions examined. 

Therefore, in our opinion the Arrhenius equation, being taken from homoge- 
neous kinetics, cannot be applied to non-isothermal heterogeneous reactions, since 
the conditions of the Arrhenius equation are not fulfilled under the circumstances 
of these latter ones. In these cases the model of transport theory must be taken into 
consideration. 

It was also demonstrated how much the courses of the curves are influenced by 
the experimental conditions. Therefore, even in the case of the strictest standardiza- 
tion of the experimental conditions, the curves obtained in parallel examinations 
would run in a domain of varying width. 
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The reliability of kinetic calculations becomes even more questionable if we raise 
the question of one-to-one correspondence between the ternary parameter system 
(A ,  E, n) and the T G  curve. We decided, therefore, to perform a critical study of 
the mathematical bases of the kinetic calculations. We wish to report on the results 
of our examinations in the present and subsequent papers. 

The TG curve as solution curve of the Arrhenius differential equation 

We selected as the subject of our research those reaction kinetic calculations 
which are based on the data of TG curves. We did this because, of all the thermal 
effects, the weight changes of the sample demonstrate most truly the progress of the 
conversion, and there exists a strict numerical correlation between weight changes 
and progress not as in the case of DTA or DSC measurements. 

For the determination of kinetic parameters of reactions involving weight 
changes, the T G  curve can be studied on the basis of the following considera- 
tions: 

d ~(t) 
d ~  - k " f ( ~ ( t ) )  (1) 

where ~ is the reaction coordinate, k the constant of reaction rate, and t the time. 
In reactions with weight changes the reaction coordinate is the weight fraction of 

the converted material: 
m 0 - 177 

- - -  (2) 
m 0 - -  m v 

where m o is the initial, m the actual, and m v the final amount of the material. 
Accordingly, 

0 < ~(t) < 1 
and ~(0) = 0 and c~(tv) = 1 

where tv is the time when the process is completed. The usual form of function 
is 

f ( ~ ( t ) )  = (1 - ~(t)) n (3) 

where n is the reaction order. 
It is to be noted that many relationships are known for the type of the function 

f(c 0, depending on the rate-determining thermal process. We performed our exami- 
nations with form (3). 

According to Arrhenius, the reaction rate is defined by the absolute temperature 
(T) and the activation energy (E): 

E 

k ( T )  = A " e -  ~ (4) 

where A is the pre-exponential factor, R the universal gas constant and E the activa- 
tion energy. 
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With the application of Eqs (1), (3) and (4) we obtain the following differential 
equation 

d e(t) 
- A "exp ( - E / R T ( t ) ) "  (1 - ~(t))" (5) 

dt 

Defining the linear heating program, 

dT 
T =  To + - ~ -  " t = To + G " t (6) 

where T O is the initial temperature (K) and G the heating rate (~ we obtain 

d c~(T) A 

dT G 
�9 exp ( - E / R T )  "(1 - c~(T)) n* (7) 

This separable differential equation can be integrated after separation of the vari- 
ables. 

The aim of mathematical examinations 

We can by no means be satisfied with the fact that many arguments have dearly 
shown that relation (5) generally cannot be regarded as the real physicochemical 
model of the process examined (Fig. 1, Table 1). 

In order to be able to clarify the problem one has to make investigations in two 
important directions. On the one hand, it is necessary, on the basis of thorough 
thermodynamic and operational examinations of thermal processes, to try to 
establish a theoretical model containing the physical and chemical transport proc- 
esses together. However this task still requires much research work. 

On the other hand, it seems necessary to find out the actual reliability of applica- 
tion of the widely-used relation (5), generally regarded only as an apparent mcdel, 
to thermoanalytical problems. This is in fact the aim of our work. 

For the determination of the validity of Eq. (5), regarded as an empirical model, 
we carried out examinations in several directions. 

First, we performed mathematical examinations in order to find out whether, 
by any appropriate transformation of the TG curve, we could obtain features which 
are in univocal connection with the apparent kinetic parameters, their application 
at the same time serving for the better estimation of the parameters. Figure 3 dem- 
onstrates the routes of these calculations. While part "a"  of the Figure illustrates 
the conventional method of determining the parameters, part "b"  shows the way of 
searching for transformation in order to find features for the better estimation of 
the apparent kinetic parameters. 

* Here the fundamental problem c f relation (7) should be emphasized, viz.  that the 
equation is valid only if the temperature of the sample increases in a strictly linear way. It is 
however well-known that this condition can never totally be fulfilled under dynamic heating 
conditions. 

J. Thermal Anal. 17, 1979 
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Fig. 3. Conventional (a) and present (b) method of estimation of kinetic parameters 

As regards the transformations, in our present paper we wish to report on the 
application of orthogonal polynomials, while the results of the application of mo- 
ments, the Karhunen-Loeve transformation and other mappings will be described 
in the following parts of the series. 

We performed further mathematical examinations with regard to the reliability 
of the estimation of the apparent kinetic parameters, in order to establish the appli- 
cability of model (5) to thermoanalytical measurements. 

In connection with this field, in our present paper we deal with the examination 
of the widely-used technique of estimation with the integrated method of the linear- 
ized form of the model. In the following papers of the series the problems of vari- 
able transformations and non-linear estimation will be discussed. 

We think that, as regards the applicability of the model, a very important task is 
to examine the model under special experimental conditions. Therefore, we studied 
the question of what conclusions can be drawn from the application of the model 
under the conditions of quasi-isothermal-quasi-isobaric measurements. This 
problem will also be discussed in detail within the framework of this series. 

Application of transformations: orthogonal polynomials 

It is a well-known fact that the combinations of various and different parameters 
yield nearly the same TG curve [21]. These simulation experiments mean that 
model (5) or (7) is not sensitive to changes in certain parameters. For demonstration 
of the connection existing between the shape of the curve and the changes in the 
model parameters, we constructed a series of TG curves with the help of model (7), 
i.e. with its parameters, which changed between the limits of physical reality (Fig. 4). 
The data concerning the simulation of the curve series are given in Appendix I. 

Y. Thermal Anal. 17, 1979 
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Fig. 4. Influence of changes in the n, E andA parameter values on the courses of TG curves: 
a) n = 0.1, 0.3, 0.6, 0.,9 1.2, 1.5, 1.8, 2.1 and 2.4 in the sequence of curves 1-- 9, E = 40, 
A = 1014; b) E =  25, 35, 45 and 55 in the sequence of curves 1--4, n = 1.05, A ---- 1014; 
c) A = 101~ 1012, 1014, 1016, 10 is and 1020 in the sequence of curves 1-- 6, E = 40, n = 1.05. 

The s imulat ion examinat ions  clearly demons t ra te  the wel l -known compensa t ion  
effect, i.e. the corre la t ion  between the pa ramete r s  A and E. 

We tr ied to find out  whether,  in the app l ica t ion  of  o r thogona l  po lynomia ls ,  their  
coefficients are sensitive to changes in the pa ramete r s  or  not.  I f  there are  po lynomia l  
coefficients sensitive to changes in the parameters ,  then f rom the coefficients deter-  
mined on the basis of  the real T G  curve one can draw conclusions regarding  the 
parameters .  

F o r  the clarif ication of  this p rob lem we proved  first that  a T G  curve descr ibed by 
a finite number  o f  discrete values can be const ructed  with given accuracy  with an  
or thogona l  po lynomia l  of  m-th degree, i.e. there  is a one- to-one correspondence  
between the T G  curve and the coefficients of  o r thogona l  po lynomia l s  of  m-th 
degree. Append ix  l I  contains  these proofs.  

In  accordance  with the descr ipt ion in Append ix  I I I  we p roduced  an o r thogona l  
po lynomia l  system and fitted it to the numerical ly  s imulated T G  curves as descr ibed 
in Append ix  IV. We depicted graphical ly  the changes in the first six coefficients as 
funct ions o f  the individual  kinetic  parameters  (Figs 5 - 7). 

These examinat ions  showed that  the changes of  the pre-exponent ia l  factor  (A) 
in the doma in  examined were not  reflected in the changes of  the coefficients of  the 
po lynomia l  systems. Wi th  var ia t ion  of  the ac t iva t ion  energy (E), little effect can be 
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observed only in the 2 4 - 3 5  kca l /mole  domain.  Only the reaction order has an 
effect which can be detected univocally.  

For  the thermoanalyt ical  interpretation o f  the above  results let us use the well- 
k n o w n  concept:  T w o  T G  curves (TG 1 and TG2) are different if  the (A1, El,  n 0 # 
# (Az, E2, n2) inequality is valid. T w o  curves are identical i f  their reaction kinetic 
parameters are equal. 

The basis o f  reaction kinetic calculations is the convict ion that only one  param- 
eter triplet belongs to  a given T G  curve, and only one  curve belongs to  a given 
triplet o f  parameters.  

In the course o f  calculations it turned out  that, though theoretically there exists a 
one - to -one  correspondence  between a given simulated T G  curve and the coefficients 
o f  its approximating or thogonal  po lynomia l  system, and consequent ly  various 
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Fig. 7. Variation of the coefficients of the Gegenbauer polynomials: a) with the pre-exponential 
factor; b) with the activation energy; c) with the reaction order 

coefficients belong to various TG curves, several different TG curves do not belong 
to the same coefficients. 

The coefficients of the orthogonal polynomial system approximating the various 
TG curves, made by changing the pre-exponential factor and the activation energy, 
are insensitive towards these changes. This means that TG curves represented by 
orthogonal polynomials are not of different shapes, i.e. they do not correspond to 
the different E and A parameters. 

Hence, this transformation does not yield features which would improve the esti- 
mation of kinetic parameters. Furthermore, the results of this examination seem to 
support indirectly the fact that the increase of E shifts the TG curve solely in the 
direction of increasing temperature, and the increase of A only in the direction of 
decreasing temperature ranges (Fig. 4). Hence, in the knowledge of the temperature 
interval of the TG curve, only some kind of product-like connection between A and 
E can be obtained. Accordingly, from a TG curve traced under the conditions of a 
single dynamic heating program the estimation of A and E is poor and so the esti- 
mated parameter values can hardly be used by the thermoanalyst for characteriza- 
tion of processes and materials. 

The reliability of parameter estimation 

We also examined the reliability of the estimation of reaction kinetic parameters 
for the case when the parameters are estimated by the least squares method using 
integrating method of the linearized form of model (7). 

The reliability of the parameter estimation may be characterized by examination 
of the coefficient matrix of the linear equation system of three unknowns, obtained 
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by partial derivation according to the least squares method. Let us write again the 
equation 

where 

d ~(T) 

dT 
- A* .exp  ( - E / R T ) ( 1  - a(T)) ~ 

A* ~A 
~G 

the logarithmic form of which is 

In ! ~  = l n A * - E / R T + n ' l n ( 1 - e ) .  
( 1 1  

(8) 

(9) 

d c q l  
By using this for the related values Ti, cq, ~ measured, we estimate values 

E, In A* and n with the method of least squares: 

F = /ln - In A *  + E / R T I  - n "  In (1 - ~.~ . (10) 
i=I  

By making the partial derivatives zero, let us find the minimum of the above func- 
tion: 

OF ~F ~F 
- O; - O; = O .  

In A* c~E ~n 

This means: 

N 

- E  
i=1 

N 

2 
i=1 

i=1 

dcq ] 
l n - ~ -  i - l n A *  q - E ] R T  i - n ' l n ( 1 - c ~ . ~  --- 0 

[d, 
l n - ~ i  -- In A *  + E / R T  i - n �9 In (1 - a~  R T  i - 0 

[d, ] 
ln-d-T7 - lnA* + E / R T i  - n �9 In(1 - ei) ln(1 - ~i) = 0. 

(11) 

Let us introduce the following symbols and rearrange the equation: 

1 
l n A * = B ;  Zi I n ( l - @  = b; Zi (RTi) 2 = f ;  

d(x i 1 1 d~ i 
~ - R ~ - i l n ( 1 - c q ) = d ;  ~ -R~- i  " l n ~ i  = g ;  (12} 

1 
~ R T i  - a; ~ In z(1 - ~.~ = e; ~ In (1 - ~.~ �9 In dcq 

i i ~ i  - = h "  
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This assumes the following matrix form: 

F a f m ~ 

b - d  

The problem given above is: 

A ' x = y  

C 

- g  

h 

(13) 

where A is the coefficient matrix, x the vector of the parameters [x w = (B, E, n)] 
to be determined, and y the vector [yT = (C, --g, h)] obtained from the measured 
values. 

We obtain the accuracy of the solution of the equation system from the following 
expression: 

][Ax]] _ [ [A l l .  [[A_ 1 ll" I[Ayl[  (14) [Ixl[ [lyl[ 

The product [[A[[" i[A-I[[ may give information regarding the measure of the 
relative uncertainty of the solution. This product is called the condition number 
(cond(A)) of the equation system. If  it is large then the solution is unreliable. For 
example, if cond(A) is of the order of magnitude of 10 ~, then we have to know 
vector y, consisting of the values measured, with an accuracy of 0.0001% to be able 
to obtain a 10 % accuracy of the solution. 

do~i~ 
With the application of the related values  lTi, (Xi, ~ ]  of the TG curves computed 

k s  

earlier by simulation, we took the above linear equation system, determined the 
solution and examined the condition number of the coefficient matrix. 

The values obtained show that the condition number of the linear equation sys- 
tem lies between 3 �9 10 * and 3.5 �9 10 5, demonstrating that the estimation of the 
parameter values is rather poor. As a conclusion, we may state that on the basis of 
a single TG curve traced under dynamic heating conditions the reaction kinetic 
parameters cannot be properly estimated and univocally calculated. 

Estimation of kinetic parameters in the case of the 
quasi-isothermal-quasi-isobaric measuring technique 

a) Processes taking place at constant temperature 

In the knowledge of the above discussion, let us consider the TG curve of CaCO3 
recorded by the quasi-isothermal-quasi-isobaric measuring technique (Fig. 3a). 

It can be seen that after the process has started the system sets into a constant 
temperature and maintains this until the decomposition is completed. 
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Let us apply the following wide-spread equation for this case, too: 

d e(t) 
d--~-- = A �9 exp ( -E /R T( t ) )  (1 - ~(t))n. 

521 

(15) 

Since the quasi-isothermal-quasi-isobaric measuring technique ensures a con- 
stant decomposition rate, it can be assumed that during the full time period of the 
decomposition the following is valid: 

d c~(t) 
d ~  - C (constant) 

As the thermal curve shows, the T value is also constant in the course of the 
decomposition (T = To). Accordingly, Eq. (15) changes as follows: 

C = A " exp (-E/RTo) (1 - ~ ( t ) )  n (16) 

As e(t) varies between 0 and 1, the above product can only be constant if each 
member of it is constant, since the parameters E and A are supposed not to vary 
in the course of one decomposition process. However, this is possible only if 
( 1 -  ~)n = 1, and this identity can be valid only if n = 0, which means that the 
order of the kinetics is equal to 0, without physical meaning. If physical-chemical 
meaning can be attributed to the above model, the physicalprocess (mass transport, 
heat transport) is covered by the chemical one, which is orders of magnitude more 
rapid. 

In such cases it is senseless to speak about the interpretation of the reaction kinet- 
ic parameters, since these parameters can be characteristic only of the physical con- 
ditions of the process. A further counter argument against the application of the 
Arrhenius equation to this case is that under quasi isothermal circumstances the 
boundary conditions, set up originally by Arrhenius, are not fulfilled. 

Let us examine the problem further. As (1 - cO n -= 1, it is true that 

C = A �9 exp (-E/RTo) 

or (17) 

C : e In A - - E / R T .  �9 

From this one can unambiguously conclude that 

In A-E/RT o = constant. 

On the above basis it can be stated that, in the case of zero-order processes, from 
a single curve recorded by the quasi-isothermal-quasi-isobaric measuring techni- 
que, the values of A and E themselves can not be determined, but only their rela- 
tionship. 
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b) Processes taking place at varying temperatures 

Let us examine the question further in the case of processes taking place at 
varying temperatures, recorded by the quasi-isothermal-quasi-isobaric measuring 
technique. See curve of Fe(OH)3 (Fig. 2b). 

In this case there are theoretical obstacles to the correct application of the Arrhe- 
nius equation. 

In the case of the linear heating program discussed earlier it can rightly be writ- 
ten: 

d ct(T) A 
- �9 exp ( - E / R T )  (1 - e(T)) n (18) 

dT G 

since ~ is unambiguously dependent upon the temperature, which is a linear func- 
tion of time. Therefore, the rate law can be described as a function of the tempera- 
ture. 

When recordings made by the quasi-isothermal-quasi-isobaric measuring 
technique are used, if the process takes place at only one temperature point (To) , 
Fig. 2a can be regarded as involving a function only of time, and thus: 

d c~(t) 
= A "exp (-E/RTo)(1 - c~(t)) n (19) 

dt 

where 
d c~(t) 

- constant. 
dt 

However, when the temperature of the sample varies in time in the course of 
measurement by the quasi-isothermal - quasi-isobaric technique, the Q - T G  curve 
resulting from the measurement shows that c~ is a linear function of time and an 
unknown function of temperature. Accordingly, c~ = c~(t, T(t)) and in this case one 
must not consider correctly c~ as a function only of the time or only of the tempera- 
ture. This is why the Arrhenius equation can not be interpreted in any of the simple 
forms presented previously. Hence, when processes examined by the quasi-isother- 
mal-quasi-isobaric measuring technique are taking place atvarying temperatures, 
the Arrhenius equation must not be applied, at all, not even as a formal model and 
consequently no reaction kinetic calculations may be performed with this equation. 

The au thors  wish to thank  Prof. E. Pungor  for  valuable remarks  in this work.  
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Appendix I 

Simulation of TG curves 

The Arrhenius equation, which forms the basis of the kinetic calculations, can be 
integrated by separating the variables: 

1 oo 

l a w _  1-wl-n A ' E  ( @  ; e - ~  ) A ' E  
w ~ 1 - ~ - G -  -R - ~ - d u  - ~-.-~ "p(x) 

W X 

where w = (1 - e) 

E 

RT" 

Several methods are known for the determination of p(x). An approximate for- 
mula developed by Schl6mlich (cited by Doyle [61]) has been applied here: 

p(x) ~- (x + 2) -1 " x - 1  �9 e -~ if 10 _< x _< 80. 

By simulation of the series of T G  curves the single parameters were varied in the 
following intervals: 

n 6. [0.1 ; 2.4] subject to E = 40.0, A = 1014 

A El101~ 102~ subject t o E  = 40.0, n = 1,05 

E C[25; 55] subject to A = 1014, n = 1.05 

Thus, the obtained series of curves (Fig. 4) successively show the effects of varying 
the apparent reaction order, the pre-exponential factor and the activation energy 
upon~the slope of the curve. 

Appendix II 

Correspondence between the TG curve and the coefficients of orthogonal 
polynomials 

The T G  curves are given by values of their functions at equidistant points, i.e. by 
values ai (i = 1, 2 . . . .  N). Thus, each T G  curve is transformed to a point of the N- 
dimensional Euclidean vector space (pre-Hilbert space). Let us fit all TG  curves by 
an orthogonal polynomial of m-th degree, given also by its values at N equidistant 
points. (Simulation of polynomials is to be seen in Appendix III.) Accordingly, the 
polynomial, too, can be interpreted as a point of the N-dimensional pre-Hilbert 
space. 

If  the fitted polynomial is in the near neighbourhood of the given TG  curve, 
then the fitting is good, and the coefficients of the fitting polynomial unambiguously 
determine the T G  curve. This statement is a consequence of the following theorems. 
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Let us consider the above X pre-Hilbert space, which is known as linear and nor- 
malized. Let be f CX, where f is the representation of some TG  curves in pre-Hilbert 

space. Let us regard all linear combinations ~ qgi with elements go- �9 �9 E X 
i=0 

and coefficients Co. . .  Cm, where u gi is a linearly independent element of X. 

t t eig i is the transformation of some orthogonal polynomial. Let us find the 
i=0 

c~ element for which: 
i=O 

I]f  - ~ c~ [I = ~ = i n f l l f  - ~ C2ffi [[" 
i=0 eo....em i=0 

If  there exists such an element, it is called the best approximate element. 

Theorem. There exists a best approximate element. 
Theorem. If  space X is normalized, then only one single best approximate element 

exists. 
Theorem. The pre-Hilbert space is strictly normalized. 

Relying on the above theorems, the following can be stated. The linear combina- 
tion consisting of elements go. �9 �9 best approximating the measured p o i n t f h a s  
been found. From among these, for the best approximate element it is true that: 

( f  - ~ Cigi[gk) = 0 ( k = O , 1 . . . m ) .  
i=0  

As a best approximate element does exist, the above system of equations does 
have a solution for c o . . .  %. In contrast, let us suppose that another solution for 
b 0 . . .  bm also] exists. However, because of the unicity of the best approximate 
element it is valid that: 

cigi = ~_ bigi. 
i=0 i =0 

At the same time, the fact that c i # bj (for any j )  is in contradiction with the 
linear independence of elements gl. 

Accordingly, the following can be stated. 
When examining the T G  curve in abstract space, it can unambiguously be approx- 

imated within a given limit of error. Further, the unicity of the best approximate 
curve, as well as that of the coefficients of the approximating system (which is a 
linearly independent one) has been understood. Subsequently, if our examinations 
are performed at fixed points and with a given independent system, it can be estab- 
lished that one and only one TG curve belongs to the coefficient system of the ap- 
proximating orthogonal polynomials. 
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Appendix HI 

Simulation of the approximate independent orthogonal 
polynomial system 

The following three kinds of polynomials have been examined as approximate 
orthogonal systems: 

Tchebichef polynomials 
Legendre polynomials 
Gegenbauer polynomials 

All three kinds of polynomials are, in fact, special cases of Jacobian polynomials 
and satisfy the following assumptions. 

Let us examine the closed interval [ -  1, + 1 ], and let the function p(x) = (1 - x )  ~ �9 
(1 + x) p be positive almost everywhere in this interval and ~ > - 1 ,  fl > - 1 .  
The polynomials P~'P)(x) satisfying these conditions fulfil the following condi- 

tion of orthogonality, too: 

(e}~'~)(x) I P(?'a)(x)) = gl6jl 

where 6il is the Kroenecker delta, for which 

1 i f j  = l 

6j~ = 0 in other cases. 

The Jacobian polynomials can be produced in explicit form either by the Rodrigues 
formula or by the recursive method. 

1 
If  ~ = fl = ~- the Tchebichef second-order polynomials are obtained; 

= fl = 0 the Legendre polynomials are obtained; 

= fl = 1 the Gegenbauer polynomials are obtained. 

In the fitting algorithm the appropriate kind of orthogonal polynomial has been 
produced by a general method described by Forsyte [62]. According to this, 
{~pj(x) }jm= 0 can be regarded as an orthogonal polynomial series with arbitrary weight 
p(x), which fulfils the following condition of orthogonality: 

N 
2 ~J( x'0 t~l(Xi) P(Xi) = t~jlK1 

i=1 
where K~ is constant. 

By total induction it can be proved that the orthogonal polynomial series con- 
structed in this way complies with the next recursive relation: 

4,~+1(x) = (x  - ~ j+ l )~ j (x )  - / ~ j ~ i _ l ( x )  

Co(x) - 1; r  0 

where ~j+~ and flj are dependent on the weight function and on the basic points 
as well. 
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Appendix IV 

Short  description o f  curve f i t t ing 

As can be seen in Appendix I, values of the TG  curves recorded at points N (f ,  
i = 1, . . .  N) corresponding to the chosen parameter combinations have been pro- 
duced. 

As described in Appendix III, values (~bj(xi); i = 1, . . .  N, j = 0 . . . .  m) of the 
single elements of the corresponding orthogonal system have similarly been pro- 
duced. 

With values produced in this way the fitting was carried out by the least squares 
method according to the following formulae. 

With the above polynomials the approximation will be: 

ym(X) = ~ Cj~j(X). 
j=0 

The weighted sum of squares 
N 

F ( c ~ . . .  c m) = ~ p(x.3(fi - ym(x~)) ~ 
i=1 

is minimized by making its partial derivatives with respect to the coefficients zero. 
Thus, 

djlcj  = ql (l = O, 1 . . .  m)  
j=O 

where 
N 

4, = E p(xO~j(xO~l(x3 
i=1 

N 

q1 = 2 fl(Xi)"fi " r 
i=1 

As the series {q~j(x)} is orthogonal, 

dj~ = (~j1KI �9 
Thus: 

qi 
e?  d~l 

The coefficients cj obtained in this way are demonstrated as functions of  E, A and 
n in Figs 5 -  7. 
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R~sumg --  A partir de nombreuses exp6riences et r6flexions th6oriques, les auteurs avaient 
d6montr6 auparavant que l'allure des courbes TG non isothermes 6tait fortement illfluenc6e 
par les conditions d'exp6rience. Pour cette raison, la signification des parambtres cin6tiques 
calcul6s ~t partir de ces courbes 6tait fictive et leur d6termination incertaine. 

Dans le pr6sent travail les auteurs discutent quelques autres probl6mes sur cette question. 
En se servant de combinaisons de param6tres fortement diff6rents on peut produire des courbes 
TG presque identiques et cette situation lle peut pas 6tre am61ior6e m6me par transformation 
polynomiale orthogonale. En outre, on a trouv6 qu'~ t'aide de m~thodes par int6gration et par 
lin6arisation, l 'estimation des param6tres est mauvaise. 

Le mod61e transform6 selon les conditions de la technique quasi isotherme -- quasi isobare 
entraine des contradictions qui indiquent, sans 6quivoque, les corr61ations existant entre les 
param6tres. 

ZUSAMMENEASSUNG- Aufgrund zahlreicher Versuche und theoretischer Erwfigungen hatten 
die Autoren frtiher gezeigt, dab der Verlauf nicht isothermer analytischer Kurven stark yon 
den Versuchsbedingungen beeillflul3t wird und deshalb die Bedeutung der aufgrund dieser 
Kurvell berechneten kinetischell Parameter fiktiv und ihre Bestimmung ullsicher ist. 

In der gegenwfirtigen Arbeit werden einige weitere Probleme dieser Frage er6rtert. Die 
Autoren fanden, dab mit Hilfe voll Kombillationen stark verschiedeller Parameter nahezu 
identische TG-Kurven hergestellt werden k6nnen und dab dieser Tatsache selbst durch 
orthogollale Polynomtransformation nicht abgeholfen werden kann. Welter wurde gefunden, 
dab mit Hilfe yon Integralmethoden unter Anwendung yon Linearisierung erhaltene Sch/itzun- 
gen der Parameter ungenau sind. 

Das den Bedingungen der quasi-isothermen--quasi-isobaren Technik entsprechend trans- 
formierte Modell ffihrt zu Widersprtichen, welche die zwischen dell Parametern bestehenden 
Beziehungen eindeutig zeigen. 

Pe3ioMe - -  Ha OCHOBaHHH MHOI'tlX 9KcrlepHMeHTaYlBHblX H Teope;rH~ecKax pa3MblmHear~, aBTO- 
p~,t pallee llOKaBaHll, ~TO XO/I HeH3OTepMrNecFd~X aHaHHTHqeCKHX KpHBBIX ctLrIBHO 3aTparHBaeTc~ 
3KcIIepHMeHTaHBHBIMt{ yCJIOBH~IMH II nO3TOMy CMt,ICYI KHHeTHHecKItX napaMeTpoB, BBIKIICYleHHBIX 
Ha OCHOBe 3THX KpHBblX, HBJIIteTCl/ qbHKTHBHblM II IIX ollpe~eY~eHvie COMHHTe.rlBHO. B HaCTOS~erd 
coo6merlvm o6cyx~em, i HeKOTOpble lla.nbHeftml,Ie IIpO6.1IeMbI 3TOFO Bonpoca. ABTOpBI Ham.JIH, 
qTO C IIOMOIIIBtO XOM6HHaI~Hft CHHBHO pa3Hrt~aromrixc~ napaMerpoB MOFyT 6BITb no~yqeHM 
IIOqTtI lI,aeHTl, lqHhle KpitBbIe TF J~ 3TO n o ~ o x e ~ e  He Mo~KeT ~bITB yzyutueHo ~axe r~p~ OpTO- 
FOHaHbHOM nOHHHOMHOM npespameHrm. ~ar~ee, 61,i:1o HafUIeHO, qTO c IIOMOIL[btO HHTerpaJ'lBHblX 
MeTO/IOB !~I npll Hcno2It,3OBaHItH HHHe~HOCTH, BblHHCJIeHIIe napaMeTpoB 6e~Hoe. Mo~eym, npe- 
o6pa3oBaHHaa cornacHo yCHOBI/~f[ KBaBHH3oTepMHqecKoFo - -  KBa3HIt306apHOFO MeTo/Ia HpI,I- 
BOJIHT K npOTaBOpeqH~M, He~ByCMr~ICHeHHO lloKa3bma~ roppeHatma, cyttIecTBytonIrIe Mex)Iy 
napaMeTpaMrI. 
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